# Valorization of Cork Waste in Particleboard Production with Innovative Binder

Aleksander Hejna<sup>1,\*</sup>, Mateusz Barczewski<sup>1</sup>, Jacek Andrzejewski<sup>1</sup>, Adam Piasecki<sup>2</sup>, Rupali Tiwari<sup>3</sup>, Ľuboš Krišťák<sup>3</sup>

aleksander.hejna@put.poznan.pl

<sup>1</sup> Poznan University of Technology, Institute of Materials Technology
<sup>2</sup> Poznan University of Technology, Institute of Materials Engineering
<sup>3</sup> Technical University in Zvolen, Department of Wood Technology





# Valorization of Cork Waste in Particleboard Production with Innovative Binder



**INNOGOW - Supporting innovation in bulky waste management** 

(Science for the Society II, NdS-II/SP/0039/2024/01)

Principal Investigator: dr inż. Aleksander Hejna

Funding: PLN 1 063 700.00

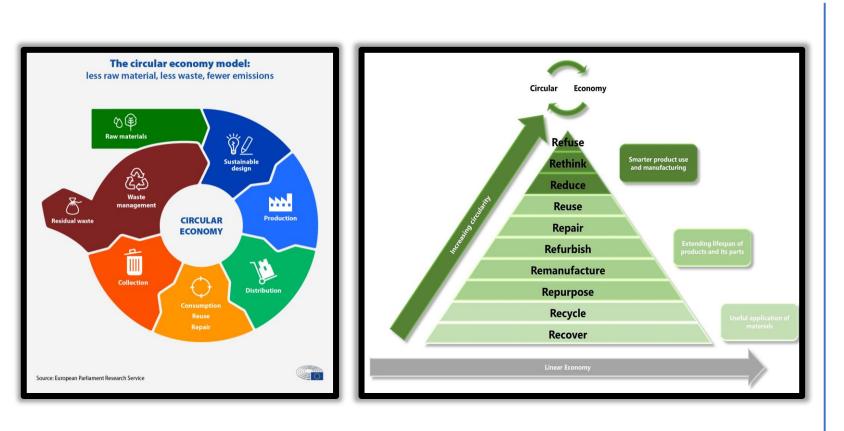
Implementation period: 07.02.2024 – 06.02.2027





# Background

# **Bulky wastes** Basic information




- Municipal waste generation in Poland (in million tons): 10.9 (2015) → 13.7 (2021)
- Only 40% of recycling level
- Bulky waste mainly wood, wood-based materials, and polyurethane foams
- Lack of efficient management methods and proper applications



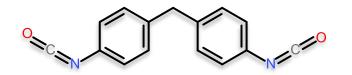
# Background

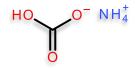
# **Circular Economy** Motivation and measures

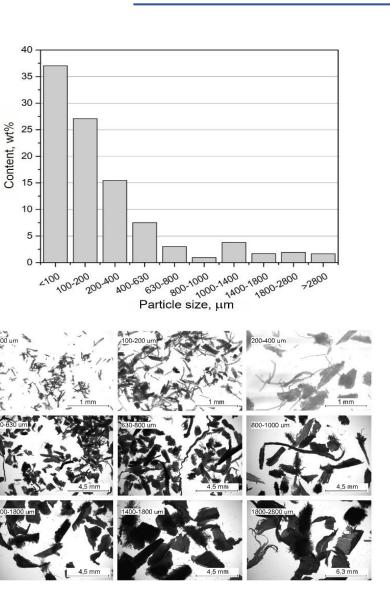


- EU Directives (Green Deal, Climate Target Plan)
- Penalties for not meeting targets
- Growing environmental awareness
- Need for novel waste management methods
- Need for final applications
- Need for high quality products




# Wastes


Cork granulate (CORKPOL)


Fraction: 0.2-0.5 mm

# Binder

Methylene diphenyl diisocyanate (MDI) Ammonium bicarbonate (AB)







# Materials



# **Applied compositions**

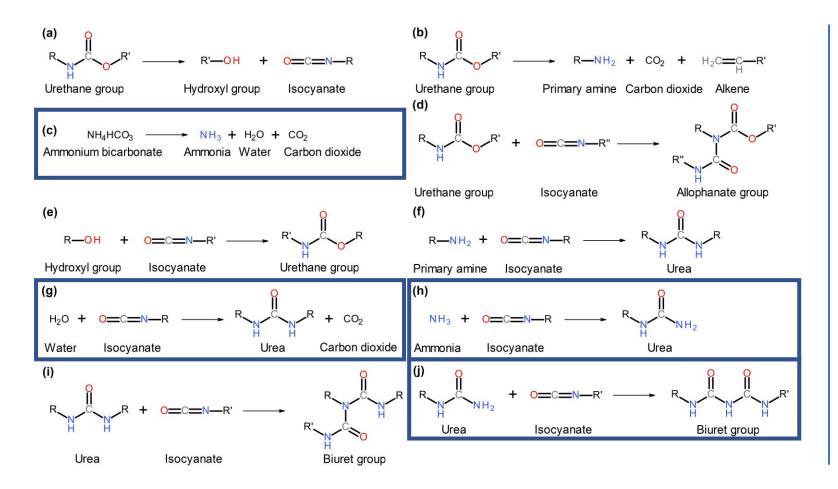
| Sample | Content, wt% |        | Binder composition, | Molding        | Molding   |
|--------|--------------|--------|---------------------|----------------|-----------|
|        | Cork         | Binder | MDI:AB molar ratio  | temprature, °C | time, min |
| 1      | 80           | 20     | 1:0                 | 100            | 2         |
| 2      | 80           | 20     | 3:1                 | 100            | 2         |
| 3      | 80           | 20     | 2:1                 | 100            | 2         |
| 4      | 80           | 20     | 1:1                 | 100            | 2         |
| 5      | 80           | 20     | 1:2                 | 100            | 2         |

# **Composites preparation**

### Sample preparation

#### Pre-mixing:

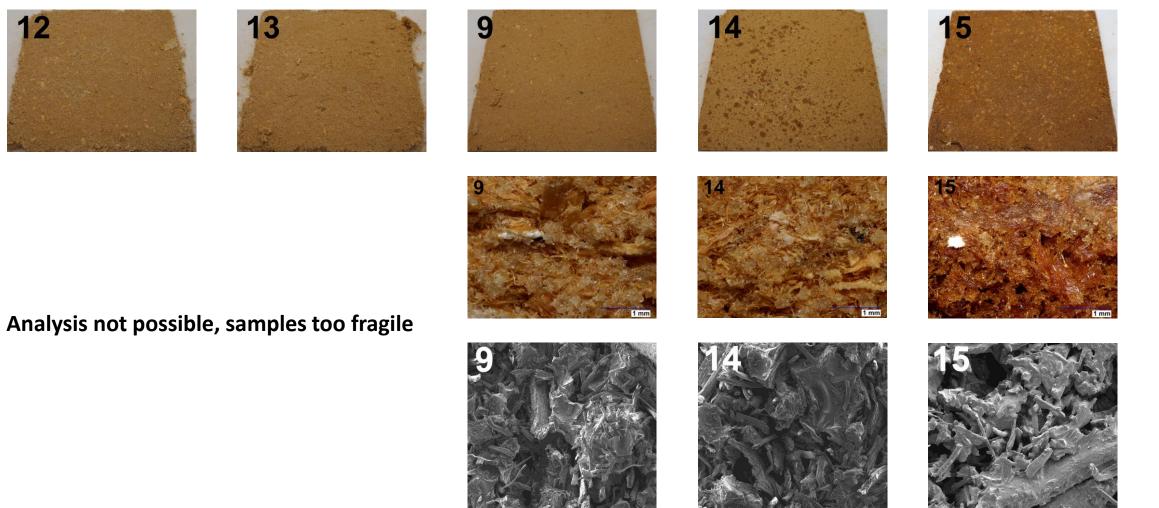
planetary mixer Gerlach GL 4219 (Germany),


5 minutes, ambient temperature

#### **Compression molding:**

Fontjine LabManual 300 (Netherlands),

2 minutes, 100 °C, 20 bar


## Chemical rationale for the applied binder compositions

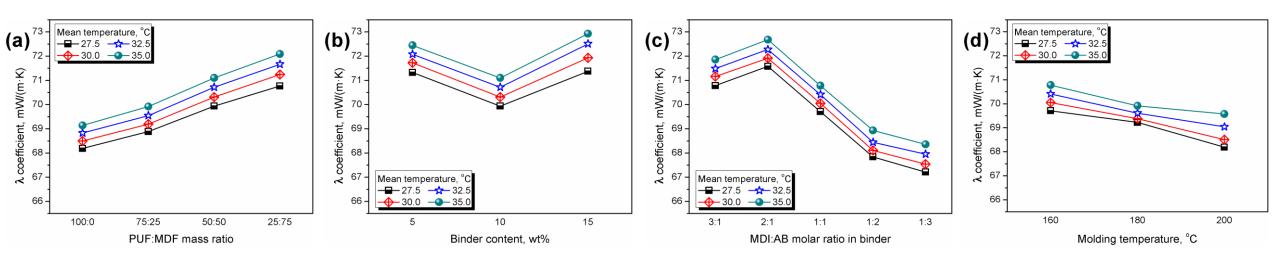


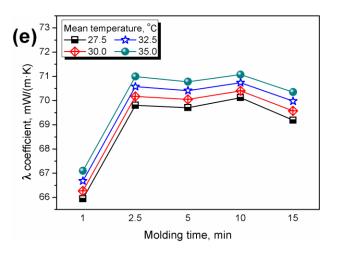
- (a) and (b) main decomposition mechanisms of urethane groups
- (c) ammonium bicarbonate thermal decomposition
- (d)-(f) reactions between diisocyanate and PU decomposition products
- (g) and (h) reactions between binder components
- (i) and (j) additional crosslinking reactions



## **Composites appearance and morphology** – different compression temperature




200 µn


Results



Results

## **Composites thermal conductivity**

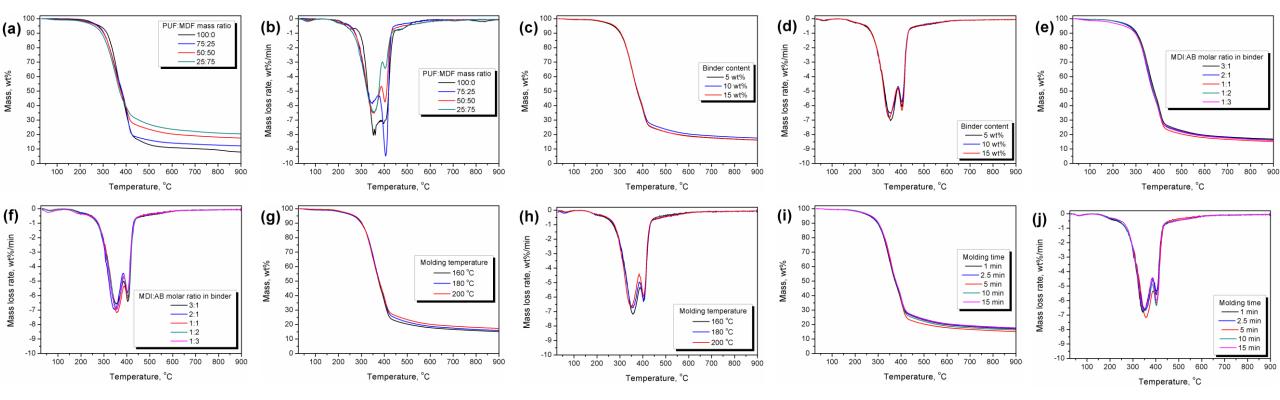




- PUFs' cellular structure enhanced insulation performance
- Higher AB content in binder limited thermal conductivity
- Higher molding temperature slightly reduced thermal conductivity
- Hardly any impact of molding time was noted
- Conductivity changes aligned with porosity of material



# **Composites mechanical performance**


| Sample | Flexural strength, kPa | Deformation at flexural strength, % | Hardness, ShO     |
|--------|------------------------|-------------------------------------|-------------------|
| 1      | -                      | -                                   | 51.3 <b>±</b> 3.3 |
| 2      | -                      | -                                   | 57.9 <b>±</b> 4.5 |
| 3      | 204.7 ± 60.5           | 5.6 ± 1.1                           | 76.8 <b>±</b> 3.1 |
| 4      | 348.3 ± 71.6           | $1.6 \pm 0.7$                       | 89.9 ± 3.8        |
| 5      | 61.9 <b>±</b> 50.2     | 6.9 ± 1.7                           | 72.1 <b>±</b> 3.4 |
| 6      | 239.3 ± 47.6           | 3.9 ± 0.9                           | 83.6 ± 4.0        |
| 7      | 232.7 ± 64.3           | 5.6 ± 0.7                           | 81.7 <b>±</b> 3.1 |
| 8      | 167.3 ± 14.6           | 5.5 <b>±</b> 0.9                    | 78.8 ± 3.9        |
| 9      | 153.7 <b>±</b> 10.8    | 5.7 <b>±</b> 1.1                    | 75.1 <b>±</b> 3.2 |
| 10     | 147.0 <b>±</b> 4.5     | 5.4 <b>±</b> 0.3                    | 66.6 ± 3.3        |
| 11     | 95.1 ± 11.9            | 6.3 ± 1.9                           | 62.7 ± 3.0        |
| 14     | 167.7 <b>±</b> 11.1    | 5.1 ± 0.7                           | 73.2 <b>±</b> 2.9 |
| 15     | 195.0 <b>±</b> 5.7     | 2.5 ± 0.7                           | 67.2 ± 3.6        |
| 16     | 75.1 <b>±</b> 6.3      | 5.5 <b>±</b> 0.5                    | 74.2 ± 4.0        |
| 17     | 164.5 ± 3.7            | 5.6 <b>±</b> 1.5                    | 76.2 <b>±</b> 2.5 |
| 18     | 120.2 <b>±</b> 4.3     | 6.9 ± 1.2                           | 76.4 ± 2.7        |
| 19     | 77.7 <b>±</b> 13.2     | 6.2 ± 1.3                           | 65.2 <b>±</b> 4.6 |

- Samples 1 and 2 flexural test not possible
- Hardness mostly enhanced by MDF content and MDI loading
- Mechanical properties driven by the extent of PUF phase thermal decomposition



# Results

# **Composites thermal stability**



- Higher MDF content increased char residue amount
- At the same time, decomposition onset shifted from 243 °C to 209 °C
- Higher binder content slightly enhanced thermal stability
- Excessive AB loading reduced thermal stability



# **Conclusions and future remarks**

- Efficient recycling process with novel binder composition using simple process of compression molding,
- Reduced amount of conventionally applied diisocyanate required,
- PU phase decomposition extent driven by the MDI/AB ratio,
- Potential applications of PU foams as waste-based binder for engineered wood materials,









#### aleksander.hejna@put.poznan.pl

#### **INNOGOW - Supporting innovation in bulky waste management**

(Science for the Society II, NdS-II/SP/0039/2024/01)

